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A semi-implicit numerical method for time accurate simulation of compressible
flow is presented. By extending the low Mach number pressure correction method,
a Helmholtz equation for pressure is obtained in the case of compressible flow. The
method avoids the acoustic CFL limitation, allowing a time step restricted only by the
convective velocity, resulting in significant efficiency gains. Use of a discretization
that is centered in both time and space results in zero artificial damping of acoustic
waves. The method is attractive for problems in which Mach numbers are low, and
the acoustic waves of most interest are those having low frequency, such as acoustic
combustion instabilities. Both of these characteristics suggest the use of time steps
larger than those allowable by an acoustic CFL limitation. In some cases it may be
desirable to include a small amount of numerical dissipation to eliminate oscillations
due to small-wavelength, high-frequency, acoustic modes, which are not of interest;
therefore, a provision for doing this in a controlled manner is included in the method.
Results of the method for several model problems are presented, and the performance
of the method in a large eddy simulation is examined. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

In simulations of flows at low Mach number, the incompressible Navier–Stokes eq-
uations are typically solved instead of the compressible equations. This results in significant
computational savings, since the time step is limited only by the convective velocity and
not the acoustic velocity. Although this approach saves computational effort, it eliminates

1 This paper is dedicated to the memory of Charles D. Pierce (1969–2002), whose ideas were the inspiration for
this work, and who continues be an inspiration to all who worked with him in the turbulent combustion community.
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acoustic waves from the problem, which may be important in some applications. To capture
acoustic waves in a simulation, the compressible equations must be solved.

Traditional explicit schemes for simulation of compressible flow are limited to time steps
that satisfy a CFL condition based on the sum of the acoustic and convective velocities.
This leads to a severe restriction on the allowable time step at low Mach number. Several
classes of methods have been developed which avoid the acoustic CFL restriction by using
an implicit time advancement scheme. The first class is based on the splitting of the Navier–
Stokes equations given by Strang [1]. Another class of methods is based on the extension
of the pressure-correction approach to compressible flows [2–5], while the third class of
methods uses dual time stepping integration [6–13]. Although implicit time advancement
methods avoid the acoustic CFL restriction, they can introduce significant artificial damping
of acoustic waves. This damping is a desirable property if the methods are used to find steady
solutions for compressible flow, but it can lead to high resolution requirements to limit this
damping if the methods are used for time-accurate simulation of acoustic waves.

In this paper, a pressure correction method is derived which avoids the acoustic CFL
limitation and causes no artificial damping of acoustic waves. This makes the method
attractive for simulation of flows at low Mach number in which low-frequency acoustic
waves are important. In such flows, significant efficiency gains can be achieved by using
large time steps, while the acoustic waves of interest will still be resolved. Analysis of the
method in the case of linear acoustics and results of several other test cases are presented. The
performance of the method when used for a large eddy simulation (LES) is also examined.

2. NUMERICAL METHOD

The equations to be solved are the continuity, momentum, and energy equations as well
as the equation of state:

∂ρ

∂t
+ ∂ρui

∂xi
= 0, (1)

∂ρui

∂t
+ ∂ρui u j

∂x j
= −∂ P

∂xi
+ ∂τi j

∂x j
, (2)

∂ρh

∂t
+ ∂ρu j h

∂x j
= ∂

∂x j

(
k

∂T

∂x j

)
+ τi j

∂ui

∂x j
+ ∂ P

∂t
+ u j

∂ P

∂x j
, (3)

ρ = ρ(P, h), (4)

P = ρRT . (5)

In these equations ρ is density, ui are the components of velocity, P is pressure, T is
temperature, h is enthalpy, τ is the viscous stress, and R is the ideal gas constant. The
enthalpy equation may be replaced by an equation for any other scalar variable (entropy,
internal energy, etc.), which, along with pressure, completely specifies the thermodynamic
state. The choice to solve an equation for a thermodynamic property has been made, because
the pressure-correction equation, as will be shown in this section, contains a partial derivative
of density with respect to pressure at a constant value of the scalar for which Eq. (3) is solved.
For this partial derivative to exist, the scalar must be a thermodynamic property. A total
energy equation would have better conservation properties in the presence of shocks, but
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the present method is proposed for simulations of flow at low Mach number, where shocks
are not an issue.

The equations are discretized in the following manner. Each velocity component is stag-
gered in space by one-half grid point with respect to the scalar variables, ρ, P , and h [14].
Additionally, all velocity components are staggered in time by one-half time step with re-
spect to the scalar variables. At each time step, the velocity components, ui , at tn and the
scalar variables at tn+1/2 are known, and the values of ui at tn+1 and the scalar variables
at tn+3/2 are to be determined. (Half indices are used to denote temporal locations that are
staggered by one-half time step with respect to integer indices.) This staggering is presented
in Pierce [16] and leads to a more accurate and stable discretization of the time-dependent
continuity equation. When expressing the fully discretized equations, difference and in-
terpolation operators [15] are used to simplify notation. For example, the difference and
interpolation operations in the x1 coordinate direction would be given by

δx1(u) = ui+1, j,k − ui, j,k

�x
(6)

and

ūx1 = ui+1, j,k + ui, j,k

2
, (7)

respectively. Difference and interpolation operators in time are defined analogously and are
given by the symbols δt (u) and ūt . Note that when these definitions are used to express
discretized tensorial equations, the convention of summing repeated indices will not apply to
the superscripts on the interpolation operators. If the difference and interpolation operators
are to be second-order accurate, then the results produced must be located at the midpoint
between the original variables. When this staggered shifting is properly taken into account,
this notation can be used to write the discrete equations in an index-free form, with the
convention that any two quantities that are added or multiplied must be at the same location
on the space–time grid.

The expression of the discretized governing equations will be simplified by introducing
the intermediate variable gi for the momentum per unit volume, which is defined according
to

gi = ρ̄xi
t ui , ui = gi/ρ̄xi

t
. (8)

In this notation, the discrete continuity equation is

δt (ρ) + δx j (g j ) = 0. (9)

Note that this equation is both implicit and centered in both space and time. The discrete
momentum equation is

δt (gi ) + δx j

(
g j

xi
t
ui

x j
t
)

= −δxi

(
P̄ t

t) + δx j (τi j ), (10)
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{
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t
)
, i = j.

. (11)
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The momentum equation is also implicit and centered in space and time. The discretized
enthalpy equation is

δt (ρh) + δx j

(
g j h̄x j

t) = δx j

(
k̄x j

t
δx j T̄

t
)

+ δt (P) + u jδx j P̄ t
x j

, (12)

which is also centered in space and time. In this equation, the viscous heating term has been
neglected, which is appropriate at low Mach number.

This discretization is nearly identical to the discretization of Pierce [16], who performed
large eddy simulations of the low Mach number, variable-density equations for reacting
flow. Pierce’s discretization has been shown to conserve kinetic energy exactly in the limit
of constant density, while some previous authors have neglected the effects of time stepping
in describing the conservation properties of their methods. In the case of variable-density
flow Pierce’s method does not conserve kinetic energy exactly, but it can be shown that
the error terms in the kinetic energy equation are dependant on time step only and not grid
spacing.

The first modification for the present formulation is to interpolate the pressure in time
twice, P̄ t

t
, before inserting it into the momentum equations. In conventional notation, this

means that the velocity is advanced from tn to tn+1 using the gradient of a weighted average
of pressure at times tn−1/2, tn+1/2, and tn+3/2:

P̄ t
t = Pn−1/2 + 2Pn+1/2 + Pn+3/2

4
. (13)

This extra interpolation is necessary to make the pressure gradient term implicit and, there-
fore, to eliminate the acoustic CFL requirement. The other differences between the present
formulation and that of Pierce [16] are the solution of the enthalpy equation and the evalu-
ation of density from an equation of state which depends on local values of both pressure
and enthalpy.

In practice it may be desirable to add a small amount of dissipation to prevent point-to-
point oscillations in the solution due to high-wavenumber acoustic modes. If such acoustic
modes are generated and are not dissipated, small-scale oscillations, which may not be
physical, will appear. To prevent such oscillations, when necessary, P̄ t

t
in the pressure

gradient term of the discrete momentum equation can be replaced by P̄ t
t∗

, defined as

P̄ t
t∗ =

(
1

4
− ε

)
Pn−1/2 + 1

2
Pn+1/2 +

(
1

4
+ ε

)
Pn+3/2. (14)

For ε > 0, this change will bias the pressure gradient term toward its future value and will,
therefore, have a dissipative effect, similar to the effect of upwinding in spatial discretization.
This change will have the greatest effect on the smallest scales in the calculation; therefore,
ε can be adjusted to a level that will achieve the desired dissipation on the small scales, while
having little effect on the large scales, which are of interest. It will be shown in Section 4.4
that a very small value of ε (e.g., 0.005) is sufficient for an actual turbulent flow simulation.
The scheme can formally be shown to maintain its second-order accuracy in time, as long as
ε is chosen to be a function of �t , which is proportional to �t in the limit of �t becoming
arbitrarily small. There is no reason to maintain this proportionality in the limit of large �t ,
so it is recommended that ε be bounded by a finite value in this limit. If such a dependence
on �t is chosen, ε will perform a similar role to the artificial diffusion term in stabilized
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finite element methods [17, 18]. In these methods a similar modification is made to the
spatial discretization to achieve a desired level of numerical dissipation without causing
excessive dissipation of the scales of interest or lowering the formal order of accuracy.

Although all terms in the preceding equations are treated implicitly, achieving stability
independent of the acoustic CFL number requires only that the continuity equation, the
pressure gradient term in the momentum equations, and the pressure work term in the
energy equation be treated in this manner [19]. Centered discretizations in space and time
of the continuity equation and the pressure gradient term in the momentum equations gives
the method zero dissipation of acoustic waves as long as dissipation is not added by the
use of P̄ t

t∗
. The reason for this will be shown in the analysis of the method for the case of

linear acoustics. It should be noted that the staggered variable arrangement is not necessary
to achieve this centering in space and time and that a version of this method for a collocated
variable arrangement can be derived similarly; however, the analysis and results presented
here are for the staggered version and may not be directly applied to a collocated version.

This implicit system of equations has excellent stability properties. In practice, these
equations are solved iteratively with a finite number of iterations and the solution can be
considered to be semi-implicit. However, if a sufficient number of iterations are performed,
this semi-implicit method is more efficient and still retains nearly the same stability prop-
erties as an implicit method.

The algorithm for obtaining the solution to this system of discrete equations is similar
to the pressure-correction method for incompressible flow. The steps of the method are
given in the following steps . In this description, the first superscript n, denotes the time
step, and the second superscript, k, denotes iteration number. Variables which do not have a
superscript indicating iteration number refer to the value at the end of the iteration process.

Step 1: Choose predictors. Initial guesses for the value of all variables at the new time
step are taken to be the values at the current time step:

un+1,0
i = un

i , ρn+3/2,0 = ρn+1/2, hn+3/2,0 = hn+1/2, etc. (15)

Step 2: Advance scalar. The first step within each iteration loop is to advance the
enthalpy. Advancement of Eq. (12) yields (ρh)n+3/2,k+1, from which hn+3/2,k+1 is obtained
by dividing by the current estimate of density at the new time step, ρn+3/2,k .

Step 3: Evaluate equation of state. The density is evaluated from the equation of state,

ρ̃n+3/2,k+1 = ρ
(

Pn+3/2,k, hn+3/2,k+1
)
. (16)

A tilde on this value of ρ is used to note that it is only a provisional value and will be
updated again using a more accurate value of pressure before the end of the iteration.

Step 4: Advance velocity. The momentum equations are advanced to yield a provisional
value of the momentum per unit volume, g̃n+1,k+1

i . This value is provisional, because it has
been computed using the current iterate of pressure, Pn+3/2,k , and will later be corrected to
account for the new iterate of pressure, Pn+3/2,k+1.

Step 5: Pressure correction. Requiring that the continuity equation be satisfied at the
new time step leads to an equation for a correction to the pressure field that is similar
to the pressure-correction equation for incompressible flow. The procedure is derived for
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the general case of P̄ t
t∗

. The case of P̄ t
t

is recovered if ε is set to zero in the following
procedure. First, provisional corrections are added to the momentum per unit volume and
the pressure,

gn+1,k+1
i = g̃n+1,k+1

i + δgi , Pn+3/2,k+1 = Pn+3/2,k + δP. (17)

These expressions are substituted into the momentum equations. To focus on the pressure
terms, the convective and viscous terms are grouped into a generic term, R:

g̃n+1,k+1
i + δgi − gn

i

�t
= −δxi

[(
1

4
− ε

)
Pn−1/2 + 1

2
Pn+1/2

+
(

1

4
+ ε

)(
Pn+3/2,k + δP

)] + R. (18)

Next this equation is split into a predictor and a corrector part:

g̃n+1,k+1
i − gn

i

�t
= −δxi

[(
1

4
− ε

)
Pn−1/2 + 1

2
Pn+1/2 +

(
1

4
+ ε

)
Pn+3/2,k

]
+ R, (19)

δgi = −
(

1

4
+ ε

)
�tδxi (δP). (20)

Equation (19) is what was advanced for g̃n+1,k+1
i in step 4. Taking the divergence of Eq. (20)

gives a Poisson equation for pressure:

δxi

[
δxi (δP)

] = 1(
1
4 + ε

)
�t

δxi

(
g̃n+1,k+1

i − gn+1,k+1
i

)
. (21)

Continuity at tn+1 is enforced by substituting for δxi (g
n+1,k+1):

δxi

[
δxi (δP)

] = 1(
1
4 + ε

)
�t

[
δt (ρ)|n+1 + δxi

(
g̃n+1,k+1

i

)]
. (22)

The δt (ρ)|n+1 term is approximated using the known density at tn+1/2 and an estimate for
the density at tn+3/2, which is obtained by adding the current estimate of the density at this
time, ρ̃n+3/2,k+1, and a term which accounts for the effect that the pressure correction δP
will have on the density at tn+3/2:

δt (ρ)|n+1 ≈ ρ̃n+3/2,k+1 − ρn+1/2

�t
+ 1

�t

∂ρ

∂ P

∣∣∣∣
h

δP. (23)

Substituting Eq. (23) into Eq. (22) yields a Helmholtz equation for the pressure cor-
rection, δP:

δxi

[
δxi (δP)

] − 1(
1
4 + ε

)
�t2

∂ρ

∂ P

∣∣∣∣
h

δP

= 1(
1
4 + ε

)
�t

[
ρ̃n+3/2,k+1 − ρn+1/2

�t
+ δxi

(
g̃n+1,k+1

i

)]
. (24)
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This Helmholtz equation is solved for δP , which is used to determine gn+1,k+1
i and Pn+3/2,k+1

from Eqs. (17) and (20). Notice that the magnitude of the Helmholtz term is proportional
to ∂ρ

∂ P

∣∣
h

and inversely proportional to �t2. Since the number of iterations required to solve
a Helmholtz equation decreases as the magnitude of the Helmholtz term increases, the
time step and the choice of scalar will affect the performance of the Helmholtz solver.
In the limit of large time step, the Helmholtz equation will become approximately equal
to the Poisson equation that would be solved in the incompressible pressure-correction
method.

Step 6: Evaluate equation of state. The density is again evaluated from the equation of
state, using the more recent estimate of pressure:

ρn+3/2,k+1 = ρ
(

Pn+3/2,k+1, hn+3/2,k+1
)
. (25)

The iteration loop in steps 2 through 6 is repeated either for a fixed number of iterations
or until some desired convergence criteria has been met.

There are several important features to note about this iterative process. First, the source
term in Eq. (24) is proportional to the residual of Eq. (9), the continuity equation. This
means that, as δP converges to zero, the left side of Eq. (24) becomes zero, and Eq. (9) is
satisfied. As δP converges to zero, the pressure gradient terms in the momentum equations
and the pressure terms in the enthalpy equation have also been treated implicitly. Second,
the choice of which partial derivative of density with respect to pressure to use in Eqs. (23)
and (24) does not affect the converged solution, since δP will converge to zero [4]. It
may, however, affect the convergence rate; therefore, it should be chosen appropriately. For
example, evaluation of the partial derivative of density with respect to pressure at a constant
value of the enthalpy, h, is appropriate, because enthalpy is constant during this portion
of the iteration loop. The determination of the new value of density can be thought of as
occurring in two parts. First, in steps 2 and 3, the density is updated to account for a change
in enthalpy, h, at constant pressure. Then, in steps 5 and 6, the density is updated to account
for a change in pressure at a constant enthalpy. Using this reasoning, if Eq. (12) is replaced
by an equation for a different scalar, the partial derivative of density with respect to pressure
is evaluated at a constant value of that scalar. For example, if an entropy equation replaces
the enthalpy, the partial derivative of density with respect to pressure in Eq. (24) would
be ∂ρ

∂ P

∣∣
s
.

3. ANALYSIS OF THE SCHEME FOR SMALL-AMPLITUDE (LINEAR) ACOUSTICS

The properties of the method can be determined analytically in the case of one-dimensional
small-amplitude (linear) acoustics when the scheme is implemented on a uniform Cartesian
mesh. Performance on a nonuniform grid will be different, and the results derived here
cannot be directly applied to that case. In the following analysis, it is shown that the nu-
merical method does not artificially attenuate or amplify acoustic waves. An expression is
also derived for the frequency at which acoustic waves oscillate in the numerical solution,
and this is compared to the frequency obtained from the analytical solution. This analysis
demonstrates some desirable properties of the method and provides a means of determining
the resolution necessary to accurately represent waves of interest. This analysis is performed
for implementation of the method with P̄ t

t
used in the momentum equation. If P̄ t

t∗
is used
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to remove unphysical oscillations at small scales, the method will be dissipative, but the
amount of dissipation can be controlled by changing the value of ε in Eq. (14), and in the
limit of ε approaching zero, the properties of the method approach what is found in this
section. In the case of linear acoustics, the governing equations reduce to

∂ρ ′

∂t
= −∂(ρu)′

∂x
, (26)

∂(ρu)′

∂t
= −∂ P ′

∂x
, (27)

ρ ′ = 1

c2
P ′, (28)

where the prime symbol indicates deviation from the mean value. Differentiating and com-
bining these equations results in a wave equation for the pressure fluctuations:

∂2 P ′

∂t2
= c2 ∂2 P ′

∂x2
. (29)

On a periodic domain, the solution to this equation is

P ′(x, t) = P ′
0 exp[i(ωt ± kx)], ω = kc, (30)

where ω is the frequency and k is the wavenumber of the acoustic wave.
In this one-dimensional, linear case, the numerical scheme reduces to

δt (P ′) = −c2δx (g
′), (31)

δt (g
′) = −δx

(
P ′t

t)
. (32)

Applying the δt operator to Eq. (31) and applying the δx operator to Eq. (32) yields

δt [δt (P ′)] = −c2δt [δx (g
′)], (33)

δt [δx (g
′)] = −δx

[
δx

(
P ′t

t)]
. (34)

Substituting Eq. (34) into Eq. (33) gives the discrete version of the wave equation:

δt [δt (P ′)] = c2δx

[
δx

(
P ′t

t)]
. (35)

The propagation of acoustic waves by the discrete equations can now be analyzed. Since
the problem is linear, each mode is independent of other modes; therefore, the analysis
can be performed for a single mode having wavenumber k. Accounting for the spatial
discretization, the numerical solution can be described by

δt [δt (P̂ ′)] = −c2(k ′)2

(
P̂ ′t

t)
. (36)

In this equation, a spatial Fourier transform of Eq. (35) has been performed, and the Fourier
coefficient of pressure for the wavenumber k is indicated by P̂ . The modified wavenumber
k ′ of the δx [δx ( )] operator [20, 21] is defined by the relationship δx [δx (eikx )] = −k ′2eikx .
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For a given spatial discretization scheme, the product k ′�x is a known function of k�x .
For the central difference scheme used here this relationship is

k ′�x =
√

(2 − 2 cos(k�x)). (37)

In conventional notation, Eq. (36) can be written

(P̂ ′)n+3/2 − 2(P̂ ′)n+1/2 + (P̂ ′)n−1/2

�t2
= −c2(k ′)2 (P̂ ′)n+3/2 + 2(P̂ ′)n+1/2 + (P̂ ′)n−1/2

4
. (38)

Assuming solutions of the form (P̂ ′)m = P̂ ′
0σ

m and substituting into Eq. (38) results in a
quadratic equation for σ , we get

[
1 + (�tck ′)2

4

]
σ 2 +

[
−2 + (�tck ′)2

2

]
σ +

[
1 + (�tck ′)2

4

]
= 0. (39)

The error of a numerical scheme can be quantified by the error in amplitude introduced at
each time step, which is related to the magnitude of σ , and the error in phase introduced at
each time step, which is related to the phase of σ .

Solving Eq. (39) for σ yields

σ =
[√

2 ± i �tck ′√
2

]2

2 + (�tck ′)2

2

. (40)

The analysis will be continued by examining only the root of sigma which has the positive
sign in the numerator. Analysis of the other root is similar and yields the same results.

An attractive property of this method is that the magnitude of σ is equal to one,

|σ | = 1, (41)

regardless of the values of k ′ or �t , provided that k ′ is real, which is true for the present
spatial discretization scheme and any other centered scheme. This means that acoustic waves
are not artificially amplified or attenuated by the numerical method, regardless of the spatial
grid spacing or the size of the time step used.

The change in phase, �θ , of the numerical solution for P̂ ′ at each time step is given by

�θ = tan−1

[
Im(σ )

Re(σ )

]
= tan−1

[
2�tck ′

2 − 1
2 (�tck ′)2

]
. (42)

In this equation, the inverse tangent function is defined to have a range from 0 to π , instead of
the usual −π/2 to π/2. This is done to ensure that values of sigma with positive imaginary
parts and negative real parts are properly described as being in the second quadrant by
this inverse tangent function. Defining the frequency of the numerical solution ωn to be
�θ/�t , a ratio of the frequency of the numerical solution ωn to the actual frequency ω can
be obtained. Inserting this definition of ωn into Eq. (42) results in

ωn

ω
= 1

(CFL)(k�x)
tan−1

[
2(CFL)(k ′�x)

2 − 1
2 ((CFL)(k ′�x))2

]
, (43)
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where the CFL number, based on the acoustic speed, is

CFL = c�t

�x
. (44)

The results of this analysis can be used to determine the resolution required for simulation
a priori. For example, on a spatial grid on which the shortest acoustic waves of interest have
20 grid points per wavelength (k�x = π/10), Eq. (43) can be used to determine that the
CFL number must be 2.48 or less if ωn/ω is required to be greater than or equal to 0.95 for
the wavelengths of interest. This topic will be discussed further in the context of an actual
LES in Section 4.4.

4. RESULTS

4.1. Linear Acoustics

The properties of the method for linear acoustics derived in Section 3 have been verified
by numerical simulations of the Euler equations for the case of small-amplitude acoustic
waves in a periodic domain. The Euler equations provide a more difficult test of the stability
of the method, since they contain no viscous or diffusive terms to damp oscillations that
may be present. In this and all other numerical tests, constant values of specific heat have
been assumed. In this, as in all other simulations except for the LES of Section 4.4, P̄ t

t

is used with no added dissipation. This point will be discussed further in Section 4.4.
In the first test, the algorithm as presented in Section 2 has been used to time advance
acoustic waves from an initial condition of a small-amplitude (umax/c = 10−6) sinusoidal
velocity disturbance on a periodic domain. An entropy equation was solved instead of
the enthalpy equation presented in Section 2. In this case the algorithm requires only one
iteration per time step, since the equations are approximately linear, and entropy is constant.
If the enthalpy equation had been used, the method may have required more iterations
per time step, but it would have, otherwise, been equivalent. Since the acoustic waves
have small amplitude, the full set of discrete equations reduces approximately to Eqs. (31)
and (32), and these simulations can be used to test the relationships determined in the
analysis. Results are compared to the barely implicit correction (BIC) method [2], which
is the only other method of which the authors are aware that avoids the acoustic CFL
limitation and for which published data for the time accurate simulation of acoustic waves are
available.

The amplitude of the acoustic waves has been found to remain constant in the numerical
simulations, verifying Eq. (41). In Fig. 1 the magnitude of sigma has been plotted versus
spatial resolution, which is measured by the product of the wavenumber k, of the acoustic
wave and the grid spacing �x . In this plot, results from the proposed Helmholtz method
are compared to results from the BIC method for simulations performed at CFL = 0.5. It
is clear that the Helmholtz method does not alter the amplitude of acoustic waves, while
the BIC method causes significant attenuation of nearly all scales of acoustic waves. Al-
though not shown, at larger CFL numbers the Helmholtz method still causes no attenu-
ation of acoustic waves, while the attenuation caused by the BIC method becomes even
greater.

The frequency of the acoustic waves in the numerical simulations has also been compared
to the theoretical predictions and to the BIC method. Figure 2 is a plot of the ratio of the
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FIG. 1. Comparison of amplification/attenuation of acoustic waves by the Helmholtz and BIC methods.

frequency of the numerical solution to the frequency of the analytical solution, ωn/ω, versus
the spatial resolution k�x . Results from the proposed Helmholtz method are compared to
theoretical predictions and to results from the BIC method [2] for simulations performed at
CFL = 0.5 and 2. It can be seen that the theoretical predictions of the numerical frequency
are correct and that the Helmholtz method represents the frequency of acoustic waves more
accurately than the BIC method. It is also possible to collapse the theoretical predictions
for the frequency of the numerical solution given in Eq. (43) into a single curve. Figure 3
contains a plot of the theoretical prediction of (ωn/ω)(CFL)(k�x) versus (CFL)(k ′�x)

along with data from the numerical tests.
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FIG. 2. Comparison of dispersion relationship to BIC method.



556 WALL, PIERCE, AND MOIN

(CFL)(k’∆x)

(
n/

ω
ω

)(
C

F
L)

(k
∆x

)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

Theoretical
Numerical (CFL=2)
Numerical (CFL=8)

FIG. 3. Collapsed curve for dispersion relationship of Helmholtz method.

The method’s property of preserving the amplitude of acoustic modes has also been tested
for a two-dimensional case. In this test, a rectangular domain with solid-wall boundary
conditions on three sides and a constant-pressure boundary condition on the remaining side
has been initialized to contain a small-amplitude acoustic mode consisting of a three-quarter
wave in the x direction and a full wavelength in the y direction. Contours of pressure in
this acoustic mode are shown in Fig. 4. The grid consists of 48 equally spaced points in the
x direction and 32 equally spaced points in the y direction, and the time step is such that
the CFL numbers are 2.21 and 8.83 in the x and y directions, respectively. In Fig. 5 the
pressure near the pressure antinode at the left boundary is plotted as a function of time. This
is done twice, once at the beginning of the simulation and once after about 100 periods of
oscillation. In this plot the fluctuating pressure normalized by the mean pressure is plotted
versus the nondimensionalized time ωt , where ω is the analytical frequency at which the
mode should oscillate. This plot shows that the amplitude of pressure fluctuations does
not change significantly over the course of about 100 periods. Analysis of the data does
show that the amplitude of oscillation has actually decreased by about 2.8% between the
time ωt = 5 and ωt = 95. By accounting for the number of time steps between these two
times, these data can be used to calculate that the absolute value of σ , which was shown
analytically to be unity in Eq. (41), is actually 0.99993 in this simulation. This discrepancy
is small enough to be neglected in nearly all cases of interest.

Location of Time History Data for Pressure

y
x

FIG. 4. Shape of pressure fluctuations in two-dimensional acoustic mode.
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FIG. 5. Time history of pressure fluctuations.

4.2. Order of Accuracy

Convergence rates of the proposed Helmholtz method have also been verified by nu-
merical tests. In these tests, the algorithm as presented in Section 2 has been used to time
advance the Euler equations on a periodic domain of length L . The initial condition for
velocity is u(x) = 0.1c + 0.1c sin(2πx/L), where c is the sound speed. Pressure is initially
constant (P = P0), while entropy initially varies according to s = s0 + 0.1cp sin(2πx/L);
therefore, density varies accordingly to satisfy the equation of state. There is also a heat
input per unit volume, Q = 0.1γ cP0 cos(2πx/L)/[(γ − 1)L]. Figures 6 and 7 show the
error ε in both the velocity and pressure, measured at x = L/2 and t = L/c, as functions
of time step and spatial grid size. The data in the figures shown here were generated by
implementing the method with entropy as the scalar. Although not shown, the method has
also been confirmed to be second-order accurate for both velocity and pressure when the
scalar equation is solved for enthalpy. These figures show that the method is second-order
in both space and time as expected. It can be formally shown that the method is second-
order accurate in time as long as at least two iterations are performed. In the case of two
iterations, the method is actually a second-order Runge–Kutta method. To get the stability
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FIG. 6. Temporal convergence of Helmholtz method.
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FIG. 7. Spatial convergence of Helmholtz method.

properties of the implicit method, however, the iteration process must be continued until
convergence.

4.3. One-Dimensional Model Combustor

One important application in which the interaction of low-frequency acoustic waves
with other flow phenomena at low Mach number is acoustic combustion instability in gas
turbine combustors. Therefore, a set of simulations intended to provide a simple model for
combustion problems has also been performed. The purpose of these simulations is to assess
the performance of the method in the range of Mach numbers and density ratios, ρmax/ρmin,
of interest in gas turbine combustors. In this test the Euler equations have been solved on a
one-dimensional domain from x = 0 to L . At x = 0 the velocity has been specified to vary
sinusoidally in time about a mean value, while entropy has been specified to be constant.
The pressure at x = L has also been specified to be constant. There is heat input to the fluid
to model the heat release in the combustion process. This heat input is constant in time and
is a parabolic function of x (Q(x) = 4Qmax[x(1 − x)]). In these tests the initial condition
for the simulation is the solution to the steady problem, which has no sinusoidal variation
of the velocity at the inlet. The magnitude of the sinusoidal variation in velocity at the inlet
ranged from zero to 0.1c. This inlet variation results in acoustic waves, which propagate
through the domain. In these tests the Mach number ranged from 0 to about 0.3, while
the density ratio ranged from 0 to about 7. These parameter values are in the range that is
expected in a gas turbine combustor simulation.

Sample solutions from a simulation for which the mean Mach number at the inlet is
0.1, the magnitude of the sinusoidal variation of the inlet velocity is 0.1c, and for which
the density ratio is 5.41 are shown in Fig. 8. In this figure the deviation of velocity from
the mean, u′(x), is plotted versus the spatial coordinate for four different times. Solutions
from the Helmholtz method using 70 and 180 spatial grid points have both been computed
using time steps such that the convective CFL number is between 0.9 and 1.0. In these
simulations the CFL number based on the sum of the acoustic and convective velocities,
which would limit the time step in an explicit calculation, was between 4.3 and 4.5. These
results are compared to the “exact” solution, which is actually a well-resolved numerical
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FIG. 8. Sample solutions of model combustor problem; N = 70 (– –), N = 180 (· · ·), “exact” (—).

solution from a traditional explicit method for compressible flow. The results demonstrate
the successful use of the Helmholtz pressure-correction method in a case with large density
variation.

4.4. Large Eddy Simulation

Finally, the method has been implemented into a large eddy simulation. The LES is
of the nonreacting case of the experiments of Besson et al. [22]. In this experiment, the
flow from two fully developed turbulent channels forms a mixing layer just upstream of
a sudden expansion. This flow has previously been simulated by Duchamp de Lageneste
and Pitsch [23] using an incompressible flow solver. The Mach number at the inlet is about
0.04; therefore, a significant efficiency gain can be achieved using the Helmholtz pressure-
correction method. A contour plot of the streamwise velocity taken from the LES performed
using the Helmholtz pressure-correction method is shown in Fig. 9.

FIG. 9. Instantaneous contours of streamwise velocity from LES performed with Helmholtz pressure correc-
tion method (Dashed lines represent negative values.)



560 WALL, PIERCE, AND MOIN

Boundary conditions for this simulation are those of Poinsot and Lele [24], which are
based on a characteristic analysis of the Navier–Stokes equations. At the outlet, the ampli-
tude L1 of the incoming acoustic wave is found by the relation

L1 = Kout(P(x, y, z, t) − P0). (45)

At the inlet, entropy is set to a constant, thus setting the amplitude of the incoming entropy
wave to zero. The wall-normal component of velocity, v, and the spanwise component, w,
are taken from a separate incompressible LES of turbulent channel flow. The streamwise
component, u, is found by using the relation

L5 = Kin(U (x, y, z, t) − Utarget(x, y, z, t)). (46)

This relationship is similar to Eq. (45) and is discussed by Schönfeld and Poinsot [25].
In this equation, L5 is the amplitude of the incoming acoustic wave. The target velocity
Utarget is also taken from the incompressible LES from which v and w are taken. Once L5 is
determined, the actual velocity at the inlet can be found according to Poinsot and Lele [24].
The relationships in Eqs. (45) and (46) are meant to allow the approximate specification of
the values of flow variables at the boundaries, while still allowing acoustic energy to exit the
domain through the boundary. If streamwise velocity at the inlet and pressure at the outlet
are specified independently of the variables within the domain, all acoustic energy reaching
the boundary will be reflected and large-amplitude acoustic modes will exist within the
domain. If Eqs. (45) and (46) are used, and the values of Kin and Kout are chosen to be too
large, too little acoustic energy will be allowed to leave the domain and large-amplitude
acoustic modes will still exist.

The efficiency of the method is found to be as expected when used to perform the
LES. Unlike the tests of Section 4.3 there is a large discrepancy in the time steps allowed
by the convective CFL restriction and that which would be allowed by the acoustic CFL
restriction. This occurs in the near-wall region, due to mesh stretching in the wall normal
direction. In this region the wall-normal velocity also becomes small, but the acoustic
velocity remains large, resulting in an acoustic CFL number which is much larger than the
convective CFL number and more significant efficiency gains to be achieved if the acoustic
CFL restriction is removed. The simulation is performed on a grid of 256 × 128 × 32 grid
points in the streamwise (x), wall-normal (y), and spanwise (z) directions respectively. The
grid is significantly stretched in the wall-normal direction with adjacent grid cells differing
in width by up to 28%. This amount of grid stretching is quite high and demonstrates the
robustness of the method with respect to stretched grids. Except for a decrease by a factor
of 2 in the number of points in the spanwise direction, this is the same grid which Duchamp
de Lageneste and Pitsch used to resolve turbulent scales in their incompressible simulation.
The time step used is 0.02H/Uch, where H is the height of each channel upstream of the
splitter plate, and Uch is the mean streamwise velocity within each channel. This is the same
time step used in the incompressible simulations of Duchamp de Lageneste and Pitsch and
results in acoustics CFL numbers as large as 40 in the wall-normal direction. The simulation
required four iterations at each time step. Within each iteration, the Helmholtz solver was
found to require about 22% of the time required for the iteration. This means that each
time step requires about 2.6 times more time than an explicit method, assuming that the
explicit method requires two iterations to achieve second-order temporal accuracy and that
the explicit advancement of the continuity equation in the explicit solver requires negligible



SEMI-IMPLICIT METHOD FOR ACOUSTIC WAVES 561

TABLE I

Estimate of Dispersion Error for Acoustic

Modes Having Wavelength in the x Direction

of One-Fifth of the Streamwise Distance from

the Expansion Plane to the Exit Plane

Min �x Max �x

�x 0.0545 0.3254
k�x 0.0685 0.409
k ′�x 0.0685 0.406
CFL 10.1 1.70
ωn/ω 0.962 0.956

time compared to the solution of the Helmholtz equation. Assuming that the explicit method
would be limited to an acoustic CFL number of 1, the Helmholtz pressure-correction method
requires about 15 times less computational effort than the explicit solver would require for
this LES.

In this LES, dissipation is introduced by using P̄ t
t∗

as defined in Eq. (14) in the pressure
gradient term of the momentum equation. Without introducing this dissipation, unphysical
small-scale oscillations are found in the scalar variables. In the previous numerical tests
that have been presented, this dissipation was not required, since there were no scales of
the order of the smallest scales resolvable by the grid. Turbulent calculations, however, will
inevitably have such scales present and, therefore, are likely to require such dissipation to
prevent unphysical oscillations. For the time step used in this simulation, ε in Eq. (14) was
chosen to be 0.005. This value is very small compared to the leading order coefficient of
0.25; therefore, the damping of larger scales is expected to be negligible.

The effects of dispersion have been estimated. Although Eq. (43) is not exact due to the
nonuniform grid and the presence of ε, it can be used to estimate the effects of dispersion
on the acoustic modes of interest in the LES. By inserting maximum and minimum grid
spacings in both the x and y directions into Eq. (43) it is estimated that ωn/ω > 0.95 for
acoustic modes having wavelength in the x direction greater than one-fifth of the streamwise
distance from the expansion plane to the exit and for modes having wavelength in the y
direction on the order of the channel width downstream of the expansion. Tables I and II
provide more details about these estimates. In Table I a wavelength of one-fifth of the

TABLE II

Estimate of Dispersion Error for Acous-

tic Modes Having Wavelength in the y Direc-

tion Equal to the Channel Height Downstream

of the Expansion Plane

Min �y Max �y

�y 0.0139 0.130
k�y 0.0198 0.186
k ′�y 0.0198 0.186
CFL 39.7 4.23
ωn/ω 0.953 0.951
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streamwise distance from the expansion plane to the exit plane is assumed, and in Table II
a wavelength equal to the channel height downstream of the expansion plane is assumed.
These estimates show that even though the CFL number is as large as 40, the acoustic waves
of interest do not have excessive dispersion error.

5. CONCLUSIONS

A pressure-correction method for simulation of the compressible Navier–Stokes equa-
tions for which the time step is limited only by a convective CFL condition is presented.
The method is proposed for simulating flows at low Mach number in which the interaction
between long-wavelength acoustic modes and other flow phenomena is of interest. The
method is similar to the pressure-correction method for incompressible flow, but it requires
an iterative process at each time step. An analysis of the method in the case of linear acous-
tics is presented. The method is shown to cause no artificial attenuation of acoustic waves,
regardless of time step or grid size. An analytical formula is derived for the frequency at
which acoustic waves will oscillate in the numerical solution. This analysis has been ver-
ified by numerical tests. In turbulence simulations, it may be desirable to add dissipation
to the method to prevent unphysical point-to-point oscillations in the flow variables due to
the presence of short-wavelength acoustic modes which otherwise would not be dissipated
by the method. A provision for adding dissipation, in a manner which can be controlled to
have the desired effect on small scales without overly damping long-wavelength acoustic
modes, is presented. As long as the method does not overly damp the long-wavelength
modes, which are the ones of interest in the simulations for which the method is designed,
the method will be able to capture the interaction between these acoustic modes and other
phenomena in the simulation.

Simple one- and two-dimensional tests confirm the properties of the method when im-
plemented without dissipation. The method is also shown to be second-order accurate in
both time and space, and it is shown to work in a simulation of a one-dimensional model
problem with heat input.

The method is shown to result in large efficiency gains when performing LES at low Mach
number. In the LES there is a large discrepancy in acoustic and convective CFL numbers,
due to near-wall grid refinement; therefore, the avoidance of the acoustic CFL condition
leads to much larger allowable time steps. This difference in allowable time steps will, of
course, depend on Mach number and the spatial grid. In the LES performed here, time steps
taken were about 40 times larger than what would be allowed by an explicit method but
required only about 2.6 times more effort per time step, resulting in about a factor of 15
reduction in computational expense.
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